Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
3.
Journal of Clinical Oncology ; 40(16), 2022.
Article in English | EMBASE | ID: covidwho-2009551

ABSTRACT

Background: Despite mitigation and treatment strategies, COVID-19 continues to negatively impact patients (pts) with cancer. Identifying factors that remain consistently associated with morbidity and mortality is critical for risk identification and care delivery. Methods: Using CCC19 registry data through 12/31/2021 we report clinical outcomes (30-day case fatality rate [CFR], mechanical ventilation use (MV), intensive care unit admission (ICU), and hospitalization) in adult pts with cancer and laboratory confirmed SARS-CoV-2, stratified by patient, cancer, and treatment-related factors. Results: In this cohort of 11,417 pts (with 4% reported vaccination prior to COVID-19), 55% required hospitalization, 15% ICU, 9% MV, and 12% died. Overall outcome rates remained similar for 2020 and 2021 (Table). Hydroxychloroquine was utilized in 11% and other anti-COVID-19 drugs (remdesivir, tocilizumab, convalescent plasma, and/or steroids) in 30%. Higher CFRs were observed in older age, males, Black race, smoking (14%), comorbidities (pulmonary [17%], diabetes mellitus [16%], cardiovascular [19%], renal [21%]), ECOG performance status 2+ (31%), co-infection (25%), especially fungal (35%), and initial presentation with severe COVID-19 (48%). Pts with hematologic malignancy, active/ progressing cancer status, or receiving systemic anti-cancer therapy within 1-3 months prior to COVID-19 also had worse CFRs. CFRs were similar across anti-cancer modalities. Other outcomes (ICU, MV, hospitalization) followed similar distributions by pt characteristics. Conclusions: Unfavorable outcome rates continue to remain high over 2 years, despite fewer case reports in 2021 owing to multiple factors (e.g., pandemic dynamics, respondent fatigue, overwhelmed healthcare systems). Pts with specific socio-demographics, performance status, comorbidities, type and status of cancer, immunosuppressive therapies, and COVID-19 severity at presentation experienced worse COVID-19 severity;and these factors should be further examined through multivariable modeling. Understanding epidemiological features, patient and cancer-related factors, and impact of anti-COVID-19 interventions can help inform risk stratification and interpretation of results from clinical trials.

4.
Journal of Clinical Oncology ; 40(16), 2022.
Article in English | EMBASE | ID: covidwho-2009530

ABSTRACT

Background: Patients with cancer have worse outcomes from COVID-19 infection. However, the specific impact of COVID-19 on patients with (HNC) is largely unknown. The COVID-19 and Cancer Consortium (CCC19) maintains an international registry (NCT04354701) aimed to investigate the clinical course and complications of COVID-19 in patients with cancer. Here, we report severity of COVID-19 and its complications among HNC patients. Methods: The CCC19 registry was queried for patients with HNC and laboratory confirmed SARS-CoV-2 infection. The co-primary outcomes were severity of COVID-19 illness on an ordinal scale (0: no complications;1: hospitalized, no oxygen (O2);2: hospitalized, required O2;3: ICU admission;4: mechanical ventilation (MV);5: death), and severity of complications (mild, moderate, serious). The outcomes were further stratified by demographics, recent treatment (systemic vs local;surgery, radiation (RT) vs systemic), treatment intent (palliative vs curative), and cancer status (remission, responding, stable, progressing). Results: From March 2020 to December 2021, 356 HNC patients were identified. Median age was 65 (interquartile range 58-74), 29% were female, 56% were white, 67% were former or current smokers, 20% had a BMI >30, 15% had an ECOG performance status >2, and 57% had >2 comorbidities. 154 (43%) had no complications, 61 (17%) were hospitalized without O2, 135 (38%) were hospitalized with O2, 50 (14%) required ICU, 32 (9%) required MV, and 74 (21%) died. 88 (25%) had mild, 59 (17%) had moderate, and 132 (37%) had serious complications. 33% of patients who received systemic therapy and 30% who received RT within 3 mo prior to COVID-19 diagnosis died. Mortality was higher in patients receiving palliative when compared to curative intent treatment (44% vs 16%). In addition, 50% of patients with actively progressing cancer, and 45% who had serious complications died. Importantly, 37 (n=12 palliative systemic therapy and n=25 local therapy) patients had a treatment delay due to COVID-19 diagnosis. Conclusions: Our study is the largest cohort to date describing COVID-19 outcomes in HNC patients and suggest a high rate of mortality even in those receiving local and curative intent treatment. Variables stratified by COVID-19 severity. Note: Ordinal levels 3 and 4 not shown due to small case numbers.

6.
Annals of Oncology ; 31:S1201-S1202, 2020.
Article in English | PMC | ID: covidwho-1384954

ABSTRACT

Background: SARS-CoV-2 is associated with diverse clinical presentations ranging from asymptomatic infection to lethal complications. Small studies have suggested inferior outcomes in patients (pts) on active cancer treatment. This finding was not independently validated in our prior report on 928 pts, which included treatments administered within 4 weeks of COVID-19 diagnosis. Here, we examine outcomes related to systemic cancer treatment within one year of lab-confirmed SARS-CoV-2 infection in an expanded cohort. Method(s): The COVID-19 and Cancer Consortium (CCC19) registry (NCT04354701) was queried for pts ever receiving systemic treatment. Treatment type, cancer type, stage, and COVID-19 outcomes were examined. Pts were stratified by time from last treatment administration: <2 wk, 2-4 wk, 1-3 mo, or 3-12 mo. Standardized incidence ratios (SIR) of mortality by treatment type and timing were calculated. Result(s): As of 31 July 2020, we analyzed 3920 pts;42% received systemic anti-cancer treatment within 12 mo (Table). 159 distinct medications were administered. The highest rate of COVID-19-associated complications were observed in pts treated within 1-3 months prior to COVID-19;all-cause mortality in this group was 26%. 30-day mortality by most recent treatment type was 20% for chemotherapy, 18% for immunotherapy, 17% for chemoradiotherapy, 29% for chemoimmunotherapy, 20% for targeted therapy, and 11% for endocrine therapy. SIR of mortality was highest for chemoimmunotherapy or chemotherapy <2 wks, and lowest for endocrine treatments. A high SIR was also found for targeted agents within 3-12 mo. Pts untreated in the year prior to COVID-19 diagnosis had a mortality of 14%. [Formula presented] Conclusion(s): 30-day mortality was highest amongst cancer pts treated 1-3 months prior to COVID-19 diagnosis and those treated with chemoimmunotherapy. Except for endocrine therapy, mortality for subgroups was numerically higher than in pts untreated within a year prior to COVID-19 diagnosis. Clinical trial identification: NCT04354701. Legal entity responsible for the study: The COVID-19 and Cancer Consortium (CCC19). Funding(s): National Cancer Institute (P30 CA068485). Disclosure: T.M. Wise-Draper: Research grant/Funding (self), Travel/Accommodation/Expenses: AstraZeneca;Research grant/Funding (self): BMS;Research grant/Funding (self): Tesaro/GSK;Advisory/Consultancy: Shattuck Labs;Leadership role, Travel/Accommodation/Expenses, HNC POA Lead: Caris Life Sciences;Research grant/Funding (self), Travel/Accommodation/Expenses: Merck;Travel/Accommodation/Expenses: Eli Lilly;Travel/Accommodation/Expenses: Bexion. A. Elkrief: Research grant/Funding (self): AstraZeneca. B.I. Rini: Advisory/Consultancy, Research grant/Funding (self), Travel/Accommodation/Expenses: Merck;Advisory/Consultancy, Research grant/Funding (self): Roche;Advisory/Consultancy, Research grant/Funding (self), Travel/Accommodation/Expenses: Pfizer;Advisory/Consultancy, Research grant/Funding (self): AVEO;Advisory/Consultancy, Research grant/Funding (self), Travel/Accommodation/Expenses: BMS;Advisory/Consultancy: arravive;Advisory/Consultancy: 3D medicines;Advisory/Consultancy: Synthorx;Advisory/Consultancy: Surface Oncology;Shareholder/Stockholder/Stock options: PTC Therapeutics;Research grant/Funding (self): AstraZeneca. D.B. Johnson: Advisory/Consultancy: Array Biopharma;Advisory/Consultancy, Research grant/Funding (self): BMS;Advisory/Consultancy: Janssen;Advisory/Consultancy: Merck;Advisory/Consultancy: Novartis;Research grant/Funding (self): Incyte;Leadership role: ASCO melanoma scientific committee chair;Leadership role: NCCN Melanoma committee. G. Lopes: Honoraria (self), Travel/Accommodation/Expenses: Boehringer Ingelheim;Advisory/Consultancy, Research grant/Funding (institution), Travel/Accommodation/Expenses: Pfizer;Advisory/Consultancy, Research grant/Funding (self), Research grant/Funding (institution): AstraZeneca;Research grant/Funding (institution): Merck;Research grant/Funding (institution): EMD Serono;Research gr

7.
Journal of Clinical Oncology ; 39(15 SUPPL), 2021.
Article in English | EMBASE | ID: covidwho-1339364

ABSTRACT

Background: COVID-19 has been associated with immune modulation that may predispose infected patients to bacterial, viral, or fungal coinfections. Due to critical illness, > 70% of patients with severe COVID-19 receive empiric antibacterial or antifungal therapy, along with standard anti-COVID-19 treatments. However, the frequency of proven or probable secondary infections is < 10%. To our knowledge, there are no studies evaluating co-infections in patients with cancer and COVID-19, a vulnerable group with multiple risk factors for co-infections. We aim to describe the prevalence of bacterial, viral, and fungal co-infections, identify risk factors for coinfection, and investigate the potential impact of co-infections on mortality, in patients with a history of cancer and COVID-19. Methods: The CCC19 registry (NCT04354701) includes patients with active or prior hematologic or invasive solid malignancies reported across academic and community sites. We captured bacterial, fungal, or viral coinfections diagnosed within ±2 weeks from diagnosis of COVID-19, identified factors associated with an increased risk of having a coinfection, and evaluated the association of coinfections with 30-day all-cause mortality. Results: We examined 6732 patients with a history of cancer and a laboratory-confirmed diagnosis of SARS-CoV-2 reported to CCC19 by 82 sites between March 17, 2020 and February 3, 2021, with complete data on coinfection status. Median age was 65 (interquartile range: 55-75) years with 48% male, 52% non-Hispanic white, 19% non-Hispanic black, and 16% Hispanic. 5448 (81%) had solid tumors and 1466 (22%) had hematologic malignancies. Bacterial infections were reported in 823 patients (12%), including 296 Gram+ and 245 Gram- bacterial events. Documented viral (176 patients, 3%) and fungal (59 patients, 0.9%) co-infections were rare. The risk for co-infections increased with age, and they were more frequent among men, older patients, and those with diabetes, pulmonary or renal comorbid conditions, active progressive cancer, or hematologic malignancies (unadjusted P< 0.01). The frequency of reported co-infections decreased over the study period (divided into quartiles, Mantel-Haenszel P< 0.01). All-cause mortality rates were higher among those with bacterial (24% vs. 10%), viral (22% vs. 12%), and fungal (37% vs. 12%) coinfections compared to those without (unadjusted P< 0.01). Conclusions: The frequency of bacterial infections in patients with cancer and COVID-19 is relatively low. Viral and fungal co-infections are uncommon. Coinfections are associated with higher mortality rates. Several patient and tumor factors can be used for risk stratification and guide early empiric antimicrobial agent selection, which may improve clinical outcomes. These data could inform antimicrobial stewardship interventions in this tenuous patient population.

8.
Journal of Clinical Oncology ; 39(15 SUPPL), 2021.
Article in English | EMBASE | ID: covidwho-1339224

ABSTRACT

Background: In-hospital mortality among patients with cancer (pts) and COVID-19 infection is high. The frequency of, and factors associated with, donot- resuscitate (DNR) or do-not-intubate (DNI) orders at hospital admission (HA), and their correlation with care, has not been well studied. In November 2020, we began collecting this information for pts who were hospitalized at initial presentation in the CCC19 registry (NCT04354701). Methods: We investigated: 1. the frequency of, and factors associated with, DNR/DNI orders at HA;2. change in code status during HA;and 3. the correlation between DNR/DNI orders and palliative care consultation (PC), mortality or length of stay (LOS). We included hospitalized, adult pts with cancer and COVID-19 from 57 participating sites. Reported characteristics include age, ECOG performance status (PS), and cancer status. Comparative statistics include 2-sided Wilcoxon rank sum and Fisher's exact tests. Results: 744 pts had known baseline and/or changed code status (CS);most (79%) maintained their baseline CS (Table). Those with DNR±DNI orders at HA were older (median age 79 vs 69 yrs, p<0.001) and more likely to have: ECOG PS 2+ vs 0-1 (45% vs 22%, OR 3.95, p<0.001), metastatic disease (45% vs 35%, OR 1.72, p=0.005) and progressing cancer (32% vs 16%, OR 2.69, p<0.001), but equally likely to have received systemic anticancer therapy in the prior 3 months (38% vs 45%, p=0.15). N=192 pts with a change in CS from full to DNR±DNI were younger (median age 73), had better PS (37% ECOG PS 2+), and were less likely to have progressing cancer (23%) than those with DNR±DNI orders at baseline. However, their LOS was significantly longer, median 9 vs 6 days, p<0.001. Compared to those with DNR±DNI orders at HA, pts whose CS changed to DNR±DNI were more likely to die, OR 2.94, 95% CI 1.76-4.97, p<0.001. PC was obtained in 106 (14%) pts and associated with transition to DNR±DNI in 47 (44%), affirmation of admission CS in 58 (55%), and reversal in 1 (1%). Median LOS for pts receiving PC was 11 vs 6 days, p<0.001. Conclusions: In our sample, the majority of patients with cancer and COVID-19 were full code at hospital admission. DNR±DNI status, whether at baseline or assigned during the hospital course, was associated with worse prognosis. Longer length of stay for patients changing code status and/or receiving palliative care consultation was observed likely suggesting earlier palliative care consultation is an important, but likely underutilized component in the care of patients with cancer and COVID-19. (Table Presented).

9.
Ann Oncol ; 32(6): 787-800, 2021 06.
Article in English | MEDLINE | ID: covidwho-1191173

ABSTRACT

BACKGROUND: Patients with cancer may be at high risk of adverse outcomes from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We analyzed a cohort of patients with cancer and coronavirus 2019 (COVID-19) reported to the COVID-19 and Cancer Consortium (CCC19) to identify prognostic clinical factors, including laboratory measurements and anticancer therapies. PATIENTS AND METHODS: Patients with active or historical cancer and a laboratory-confirmed SARS-CoV-2 diagnosis recorded between 17 March and 18 November 2020 were included. The primary outcome was COVID-19 severity measured on an ordinal scale (uncomplicated, hospitalized, admitted to intensive care unit, mechanically ventilated, died within 30 days). Multivariable regression models included demographics, cancer status, anticancer therapy and timing, COVID-19-directed therapies, and laboratory measurements (among hospitalized patients). RESULTS: A total of 4966 patients were included (median age 66 years, 51% female, 50% non-Hispanic white); 2872 (58%) were hospitalized and 695 (14%) died; 61% had cancer that was present, diagnosed, or treated within the year prior to COVID-19 diagnosis. Older age, male sex, obesity, cardiovascular and pulmonary comorbidities, renal disease, diabetes mellitus, non-Hispanic black race, Hispanic ethnicity, worse Eastern Cooperative Oncology Group performance status, recent cytotoxic chemotherapy, and hematologic malignancy were associated with higher COVID-19 severity. Among hospitalized patients, low or high absolute lymphocyte count; high absolute neutrophil count; low platelet count; abnormal creatinine; troponin; lactate dehydrogenase; and C-reactive protein were associated with higher COVID-19 severity. Patients diagnosed early in the COVID-19 pandemic (January-April 2020) had worse outcomes than those diagnosed later. Specific anticancer therapies (e.g. R-CHOP, platinum combined with etoposide, and DNA methyltransferase inhibitors) were associated with high 30-day all-cause mortality. CONCLUSIONS: Clinical factors (e.g. older age, hematological malignancy, recent chemotherapy) and laboratory measurements were associated with poor outcomes among patients with cancer and COVID-19. Although further studies are needed, caution may be required in utilizing particular anticancer therapies. CLINICAL TRIAL IDENTIFIER: NCT04354701.


Subject(s)
COVID-19 , Neoplasms , Aged , COVID-19 Testing , Female , Humans , Male , Neoplasms/drug therapy , Neoplasms/epidemiology , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL